شکل(۴- ۱): محیط یک پلاسمای کوارک- گلئونی
در شکل (۴-۱) یک محیط پلاسمای کوارک- گلئونی فرضی رسم شده است، که کوارکها همانند ذرات یک گاز ایده آل در فضا پراکندهاند. در این محیط فرضی یک کوارک را در نظر بگیرید که جهت تشکیل یک پروتون یا نوترون تلاش میکند. هر کوارک با گیر انداختن دو کوارک دیگر تشکیل یک نوکلئون میدهد. در این فضای رقابتی میان کوارک ها حالات مختلفی از تشکیل یک نوکلئون میتواند روی دهد. به عنوان مثال به شکل پایین توجه کنید.
شکل(۴- ۲): شبکه مکعبی پلاسمای کوارک- گلئونی
در شکل (۴-۲) کوارکها همانند یک محیط شبکهای در اطراف یکدیگر قرار دارند. کوارک u مرکزی برای تشکیل یک نوترون در حال تلاش است، و برای این امر باید دو کوارک d را گیر اندازد. اگر اینطور فرض کنیم که از تمام کوارکهای اطراف این کوارک u دو کوارک d باشد، آنگاه رقابت دو کوارک رقابت سادهای است. در نگاه اول یک حالت ممکن بیشتر وجود ندارد و آن هم حالت udd است. در نگاه دقیقتر دو حالت وجود دارد، یعنی u قرمز به همراه d1 آبی و d2 سبز یا u قرمز به همراه d1 سبز و d2 آبی. پس دو حالت به دست میآید. حال شرایطی را در نظر بگیرید که سه کوارک d در اطراف کوارک u جهت گیوند با آن رقابت میکنند. در چنین شرایطی ترکیبات ممکن عبارتند از: ud1d2، ud1d3 و ud2d3. اگر رنگ کوارک ها را هم منظور کنیم ۶ حالت ممکن به وجود میآید که از این ۶ حالت با ۲ حالت قبل روی هم ۸ حالت را نشان میدهد. ذکر این نکته ضروری است که هر کدام از این حالتها میتواند تشکیل نوکلئون بدهد ولی حداکثر حالاتی که میتواند با ۳ کوارک اتفاق بیفتد ۸ حالت است. مشابه حالت ۳ کوارکی عدد به دست آمده برای حالت ۴ کوارکی برابر ۲۰ میباشد. با در نظر گرفتن ۵ کوارک d اطراف کوارک مرکزی با استدلالی مشابه استدلال بالا ۲۰ حالت جدید به دست خواهد آمد که با مجموع قبلی عدد ۴۰ برای عدد جادویی بعدی بدست خواهد آمد، در حالی که عدد جادویی بعدی ۲۸ خواهد بود. از آنجا که شرایط محیط کوارک – گلئونی بیشتر به یک سوپ کوارک- گلئونی شبیه است، مطابق تلاشهای صورت گرفته در نظریه کرمودینامیک کوانتومی شبکهای این امر تقریباً محرز است که نیروی جاذبه بین کوارکها کاملاً از بین نمیرود. بنابراین اگر هر کوارک d ( اطراف کوارک u مرکزی) را نزدیک به کوارکهای دیگر فرض کنیم، آنگاه به عنوان مثال اگر کوارک d2 توسط u جذب شود. ناگزیر کوارک پنجمی که بیشترین نیروی جاذبه با d2 را دارد و نام آن را می گذاریم، وارد کار میشود که آن را کوارک “تحمیل شده” می نامیم. پس هر ۴ کوارک d هنگام جذب توسط کوارک u مرکزی میتوانند کوارکی را در سطحی فراتر از کوارک های اولیه به واسطه فاصله نزدیک و یا اینکه بازنشدگی کامل از هم، به سیستم تحمیل نمایند، که این حالت جدید را چنین می نویسیم:
ud1d1َ , ud2َ , ud3d3َ , ud4d4َ
که به همراه رنگهای مختلف آن ۸ حالت جدید به وجود میآید. این ۸ حالت و ۲۰ حالت قبل ۲۸ حالت در اختیار ما میگذارد. این موضوع که توسط ۴ کوارک d دو عدد مجزای ۲۰ حالته و ۲۸ حالته تولید شده است. به طور مشابه برای ۵، ۶ و ۷ کوارک d اعداد ۵۰، ۸۲ و ۱۲۶ و نهایتاً با ۸ کوارک عدد ۱۸۴ به دست میآید. شواهدی مبنی بر وجود چنین عدد جادویی وجود دارد [۲۰]. کار با بیش از ۸ کوارک مستلزم عبور از سطح اول به سطح دوم است (چون در یک شبکه مکعبی تنها ۸ کوارک در یک فاصله برابر از کوارک مرکزی قرار دارند)، که این موضوع یعنی جاذبهای که سطح اول و دوم را کاملاً تحت تأثیر قرار میدهد و حالتهای اجباری و تحمیلی، سطح سوم را نیز ایجاد می کند و یا میتوان از شبکههای هندسی دیگری با بیش از ۸ کوارک استفاده کرد.
۴-۱-۲- انرژی بستگی هستهها از دیدگاه مدل شبه کوارکی
در مدل پلاسمای کوارک- گلئونی ارائه شده [۲۲,۲۱] دیدگاه جدیدی برای هسته ارائه شده است. در این دیدگاه، هسته شامل پلاسمای سوپ مانند از کوارکها و گلئونها میباشد که میتوان خواص هستهها را با توجه به کوارکهای محتوی به جای نوکلئونها بدست آورد.
به منظور به دست آوردن انرژی بستگی هستهای، با توجه به نگاه شبه کوارکی به نکات زیر توجه میکنیم:
۱- برای تشکیل هستهها باید انرژی بستگی مثبت باشد.
۲- انرژی بستگی مثبت از مرتبه یک درصد انرژی جرم سکون کوارک های درون هسته mqc2 میباشد که q نشان دهنده کوارکهای بالا و پایین است.
۳- در این مدل انرژی بستگی با حجم پلاسمای کوارک- گلئونی متناسب است. با توجه به اینکه هر نوکلئون از سه کوارک تشکیل شده است، لذا به ازای عدد جرمی A برای هسته، انرژی بستگی متناسب با A3 است.
۴- با توجه به عدم تقارن بین تعداد پروتونها و نوترونها، به خصوص در هستههای سنگین و در نظر گرفتن نیروی کولنی میتوان این عدم تقارن و تصحیح کولنی را مابین کوارکهای بالا و پایین موجود در پلاسمای کوارک- گلئونی درون هسته را به صورت در نظر گرفت.
با در نظر گرفتن نکات فوق فرمول زیر برای محاسبه انرژی بستگی هستهها ارائه شده است.
(۴- ۱)
(۴- ۲)
در فرمول بالا α = ۹۰ – ۱۰۰ است.
در مقایسه با مدل قطره مایعی که شامل هفت جمله در انرژی بستگی میباشد، این مدل شامل دو جمله است که وابسته به Z و N است که حاکی از سادگی بیشتر و دید جامعتری نسبت به هسته است. در این مدل، ذرات هستهای محتوایی آزاد در یک محیط پلاسما مانند چگالی بررسی میشود [۲۴,۲۳].
۴-۲- ضریب تبدیل داخلی بر اساس مدل کوارکی هستهها
در مدل شبه کوارکی، هسته شامل پلاسمایی سوپ مانند از کوارکها و گلئونها است که میتوان خواص هستهها را با توجه به کوارکهای محتوایی به جای نوکلئونها بدست آورد. در فرمول زیر با در نظر گرفتن کوارکهای سازنده نوکلئونها ضریب تبدیل داخلی را بررسی کردهایم. در فرمول زیر شاخص L تابش را به گونهای تعریف میکنیم که ۲L مرتبه چند قطبی باشد ( برای دو قطبی L=1، برای چار قطبی L=2 و ….). با تخصیص E برای خواص الکتریکی و M برای خواص مغناطیسی فرمول ضریب تبدیل داخلی با توجه به نگاه شبه کوارکی به صورت زیر ارائه شده است.
با در نظر گرفتن پروتونها ضریب تبدیل داخلی برای گذارهای الکتریکی:
(۴- ۳)
و ضریب تبدیل داخلی برای گذارهای مغناطیسی به صورت زیر ارائه شده است
(۴- ۴)
و اگر علاوه بر پروتونها نوترونها را هم در تابش گاما موثر بدانیم [۲۵]، فرمولهای زیر به ترتیب برای گذارهای الکتریکی و مغناطیسی ارائه میشود:
(۴- ۵)
(۴- ۶)
به منظور بررسی فرمولهای ارائه شده ضریب تبدیل داخلی برای دوازده عدد اتمی، ده چند قطبی E1-E5 و M1-M5 و ۸ مقدار انرژی گاما محاسبه و با مقادیر تئوری و تجربی مقایسه شده است [۲۶].
در جدولهای (۴-۱) تا (۴-۳۹)، ستون اول مقادیر آزمایشگاهی، ستون دوم مقادیر تئوری محاسبه شده با بهره گرفتن از فرمول ضریب تبدیل داخلی و ستون سوم، مقادیر محاسبه شده با در نظر گرفتن کوارکهای سازنده پروتونها را نشان میدهند. با توجه به معادلات (۴-۵) و (۴-۶)، نتایج حاصل از در نظر گرفتن کوارکهای سازنده پروتونها و نوترونها در تابش گاما با مقادیر عددی ستون دوم برابر است.
جدول (۴- ۱): EB =5.50 E-02 k shell z=3
(Kev) | EL | α (exp) | α (TE) | α (QM) |
E1 | ۶.۵۵ E-02 | ۱۰.۰۰ E-02 | ۶.۳۰ E-02 | |
۱۵ | E2 | ۵.۶۵ E+00 | ۹.۰۸ E+00 | ۵.۷۲ E +00 |
E3 | ۴.۱۰ E+02 |